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Abstract. Generalization properties of multilayered neural networks with binary couplings 
are studied in the high-temperature limit. The transition to the perfect generalization phase 
is evaluated far systems with an arbitrary number of layers. It is found that the thennady- 
namic transition OCEUTS far a number of examples lower than for the perceptron, but the 
opposite occurs for the transition i s  which the poor generalization solution disappears. 
The generalization error is also decomposed according to the contributions coming from 
different numbers of hidden neurons that have a wrong Sign in the internal field. This 
allows us to describe the generalization behaviour of the hidden neurons. 

1. Introduction 

Neural networks have been extensively studied using the methods of statistical 
mechanics [l]. Among the structures that have been considered are the multilayered 
networks. These are systems that implement a given mapping between the inputs and 
the outputs. The most simple of them is the perceptron, which is built with one input 
layer and one output unit; in more general architectures, one or more layers of hidden 
neurons are placed between them. Several properties of the perceptron are well 
understood. In particular, the maximum number of mappings that it can store has 
been evaluated [2-31. 

Another interesting problem that has been addressed for the perceptron is the 
generalization ability, i.e. the capacity to predict a correct input-output relation from 
a set of examples [4,5]. This problem can be considered in two ways. In the first the 
network is trained with a set of mappings (the training set) in which the output is 
chosen independently from the input. As there is a maximum number of such mappings 
that can be stored, the region beyond the critical capacity can he made accessible, 
only allowing errors in the input-output relation. This can he done by introducing a 
temperature parameter. Once these mappings are learnt (or the training error is the 
minimum possible at that temperature) the generalization error is evaluated over the 
rest of the possible mappings. Its behaviour with a number of examples gives rise to 
the generalization curve. It has been found that the introduction of a finite temperature 
can lower the value of the generalization error [6]. The training error is not zero, but 
the exploration of a greater portion of coupling space allows a better generalization 
performance to be found. 
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In the second approach the mappings not obtained by choosing independently the 
inputs and the outputs U, but these are given functions of the inputs s, ( i  = 1 , .  . . , N) 
and of a set of fixed couplings Jo .  Although the number of inputs in the training set 
{s}~ is arbitrarily large, the error can be always brought to zero at zero temperature 
because there is always a set of fixed couplings, the teacher J', that implements the 
correct mapping. But if there are other networks yielding the correct mapping on the 
training set, inputs outside it can have a wrong output, giving r ise  to a non-zero 
generalization error. As the number of examples is increased the number of couplings 
compatible with them decreases, and the same happens with the generalization error. 
A first-order transition occurs, even at high temperature, for binary couplings [7]. 

The purpose of this work is to study the behaviour of the generalization error for 
the second of these approaches and for the architecture shown in figure 1. The couplings 
J, from neuron j in the input to neuron i in the first hidden layer are Ising variables 
(J,  =+ti j. i h e  others can be chosen equai to i because any coupiing equai to -I can 
be transformed in +1 through a gauge transformation. 

N 

/ 

Figure 1. Non-overlapping architecture considered for the special case of one hidden layer. 

Double-layered neural networks have also been considered from the point of view 
-c-....:--n ~ -"-." ,.:&.. rQ r m  ..--A-- :" ..J~..~A +_ TP t m  fn- A:~,...~&.... 
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on the choice of the non-overlapping receptive field architecture we have adopted. 
In the next section we study the behaviour of a network with only one hidden layer 

using the high-temperature and annealed approximations. Additional hidden layers 
are considered in section 3. Our conclusions are presented in section 4. 

2. Networks with one hidden layer 

The training energy for a set of couplings J is given by 

where{s},isthe training set ofsizep, e ( J , s " ) = @ ( - u { u " ) ,  U" ( v = l ,  . . . , p = '  nN) is 
the output of the network with couplings J, U; the output with couplings 3' and @ is 
the step function. The partition function is 

z = 1 exp(-PET(Jo, J, (2) 
',,=*I 
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One should average In Z over the input patterns using the replica method. Since for 
the perceptron the relevant properties are present even at small p [7] we will use a 
high-temperature approximation and the annealed approximation. In this case the 
average logarithm of the partition function can be written as 

where the brackets (. . .) denote the average over the input patterns {s"}  with the 
distribution P ( s ) = ( S ( ~ - l ) + S ( s + l ) ) / 2  and E ( J , J o )  is the average training error: 

E(J,  Jo)  = dsP(s)E,(J, Jo,  {s}). (4) 1 
In this approximation the training and the generalization error per pattern are the same. 

The average training error is a function of the overlaps between the couplings J 
and Jo, E(J ,Ja)  = E ( m j ) ,  where 

From (3) the average free energy f can be written as 

- B f = (  ndmiexp(-Ppa(m,)+S(mi)) 

where &(mi)=E(mO/p is the average error per pattern and S(mi) is the entropy 
associated with the overlaps mi: 

M 

S(mJ = ( N / M )  [ - ( l -  mJ/2 ln(1- mi) - (1 + mJ/2 ln(1 + mi) +ln 21. (7) 

The integrals over mi can be done through the saddle point method because both PE 

First we consider a system with only one hidden layer with a finite number, M, of 

i = ,  

---I P --" --*a--:..a -.. "".:.:-.. a,," U L1'S CAlCi l lD l l r j  q""'LLLLc". 

units. The average training energy per pattern can be written as 

E = J-mdh, dh, 8(-h,h2) 6 h, -M-" 'x  qy 6 h 2 - M - ' / 2 x  7:" 

where q: and qp" are the hidden neuron representations of patterns {s"} for the current 
and the teacher networks, respectively. Defining the corresponding local field at these 
neurons as Cy and Cy',  (8) can be written as 

( (  i > (  i >> (8) 
m 

dh, dh, 8 ( -h lhJndCrdC?"  
i, Y 

h ,  - M-'/2 2 sgn( CY) h, - M- ' / 'Z  sgn( Cy') 
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Using the integral representation of the 8-function and averaging over the {s’} we have 

G Mato and N Pnrga 

M 

x~{[ l -cos- ’ (m,) /m]  c o ~ [ ( f ~ - f ~ ) / M ” ~ ]  

+cos-’(mi)/?r C O S [ ( ~ , + ~ ~ ) / M ~ / ~ ] }  (10) 

which depends only on the overlaps mi. 
The contribution proportional to cos-’(mi)/m comes from the region in which 

CrCp”<O, i.e. hidden neuron i gives a non-zero contribution to the generalization 
error. The opposite happens for the term 1 -cos-’(m,)/m. By expanding the product, 
the generalization error can be decomposed according to the number ofhidden neurons 
which have not yet learnt the rule. 

Assuming that in equilibrium all the overlaps mi take the same value m, we have 

where a = 1-2  cos-’(m)/m 
The overlap is given by the saddlepoint equation 

m = tanh(-&ae/am) (12) 

where Oi = ap. There is always a local minimum of the free energy with m = 1 and 
E = 0 that corresponds to perfect generalization. 

Evaluating the solutions of (12) and inserting the values of the overlaps in (10) we 
obtain the training and generalization error for several values of M (see figure 2). We 
see that beyond & = & the solution with m < 1 disappears. This value increases with 
M. For low & the solution with m < 1 has a lower free energy that the one with m = 1. 
When 6 = GT both free energies are equal, showing the occurrence of a phase transition. 

6 

Figure 2. Full lines show the value of the generalization energy for M = 1, 3, 5 .  7, IS ,  25, 
55 and the asymptotic limit M >> 1 (from left to right). The paints plotted are the results 
of Monte Carlo simulations for N =93, M = 3  and p =0.2. The vertical broken line shows 
the thermodynamic transition for M = 3. 
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The value of GT decreases with M, for instance it is &,= 1.52 for M = 3 and GT= 1.48 
for M = 55.  

Monte Carlo simulations were done to verify these results. In figure 2 we can see 
the mean value of the generalization error per pattern for M = 3, N = 93 and p = 0.2. 

The simulation shows an intermediate behaviour between the thermodynamic 
transition and 4. This has also been observed in other systems [ l l ,  121. 

The assumption that m, = m has been verified in the simulation, beginning from a 
random initial condition on the couplings (i.e. m, = 0). The study of the free energy 
as a function of m, using (7) and (9) reveals that there are local minima for which 
some of the m, are equal to 1 while the others verify equations similar to (12). But 
these minima have a free energy that is higher than that of the soluton with m, = m. 
Therefore, unless we begin with an initial condition of this type as will not be trapped 
in these minima. 

Coming back to the equilibrium case with m, = m, we can find that in the limit M >> 1 

E(m)=cos-'[1-2 cos- '(m)/r]/r .  (13) 

The value of the generalization error for this case is also displayed in figure 2. Comparing 
this result with the generalization error of the perceptron [7], e(m) = c o s - ' ( m ) / ~ ,  it 
is interesting to see that the effect of the hidden layer is to 'renormalize' the overlap 
from m to 1 - 2 c o s ~ ' ( m ) / r .  

Expanding the product over hidden neurons in (10) we can analyse the different 
contributions to the generalization error. As an example, let us consider the case M = 3 
(with m, = m). The contribution to the error coming from one, two or three hidden 
neurons are 

E ,  =$[I -cos-'( m ) / r I 2  cos-'(m)/a (14) 

E~ =;[I -cos~'(m)/r][co~-'(m)/~]~ (15) 

E ) =  [cos-'(m)/r]'. (16) 

It can be seen that the term in the expansion coming from perfect generalization 
in all the hidden neurons integrates to zero, as it should. 

As shown in figure 3 the three contributions behave smoothly up to & = &, where 
all of them drop simultaneously to zero. 

If perfect generalization was achieved by first eliminating errors from a single 
hidden neuron, E )  should drop for a value of & smaller than &. This does not happen. 
This is probably a consequence of the fact that we are measuring generalization 
properties by looking only at the output neutron. Bad generalization in only two 
neurons, measured by E ~ ,  also has a systematic decay. On the other hand, as & increases 
E ,  also increases, until a value of & near & is reached, showing that most of the errors 
correspond to bad performance of a single neuron. 

In summary, although there are no partial first-order transitions associated with 
perfect generalization of one or two neurons, generalization is achieved by first 
eliminating errors coming from a large number of hidden neurons. 

Another useful approach to the study of these systems is the annealed approxima- 
tion. In this case we replace (In Z )  in (3) by In(2). It is easily shown that the annealed 
free energy is given by 

- pfn = a In[ 1 + (e-@-l)~,] + S( m) (17) 
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Figure 3. Different contributions to the generalization error for M = 3  as a function of i. 
e t .  e2 and e, are thc contributions of one, two and three neurons with wrong signs in their 
internal field. 

where es is the generalization error. When p << 1 we obtain the same result as for the 
high-temperature limit, showing that in this limit the annealed approximation is exact. 

The average training energy, given by e t =  -~(pf,)/~p, results in  

which is different from eg except for p * O .  The generalization and training errors at 
T = 1 for the annealed approximation are shown in figure 4 for M = 3 hidden units. 

At (I > 2.75 the only solution is the one with m = 1 (perfect generalization) but 
there is a thermodynamic transition at (I =2. 

The Monte Carlo simulation shows that the annealed approximation is good except 
in the region of perfect generalization, where it does not take into account the metastable 
states where the system is trapped. 

0 4  

0 2  

0 1  

0 0 5  1 0  1 5  2 0  2 5  3 0  
m 

Figure 4. Full and broken lines show the value of the generalization and training energies 
as a function of n for T = 1 and M = 3. Ihe points plotted are the results of Monte Carlo 
simulations for N = 75 and 10 samples. 
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3. Additional hidden layers 

Using the ideas that lead to (9) one can easily find the expression for the generalization 
error of a system with L layers, with the restriction that the number of units in the ith 
layer must be much greater than the number of units in the ( i+  1)th layer. 

The generalization energy of a system with L layers is a function of the correlation 
between the states of the output neuron when the couplings are the teacher J o  and 
the configuration J. This correlation, denoted by cL, can be written as a function of 
the correlations between the neurons in the previous layers. This procedure can be 
iterated until the first hidden layer: 

where N, is the number of neurons in the Ith layer and 3: (s,"') is the state of the 
neuron j in the Ith layer when the coupling connections are given by J (.Io). 

When we arrive at the input layer we have that the correlations are given by 

ct = 1-2 cos-l(m)/?r (20) 
where m is the overlap between J and J o  defined in ( 5 )  (we assume that mi = m). 

In this way we obtain that the generalization error for a system with L layers is 

e ' L ' ( m )  =cos- ' (c ,_ , ) /R (21) 

where the correlations c1 are given by (19) and (20). 

see the behaviour of 
L, tends to infinity, 6, tends to 1.38 while 6, grows exponentially: a',= (a/2)! 

Inserting (21) in (12) we find the overlap, and the free energy. In figure 5 we can 
and &as a function of the number of layers. As this number, 

4. Conclusions 

We have studied the generalization properties of multilayered networks with binary 
couplings. Comparison with the perceptron reveals that as the number of layers 
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increases, thermodynamic transition to perfect generalization has a lower value of ai, 
but the value where the poor generalization solution disappears increases. Monte Carlo 
simulations show an intermediate behaviour. In the region &sGsai, the poor 
generalization solution is only a metastable state. Therefore, with a suitable annealing 
scheme it would be possible to arrive at the m = 1 solution. In this case multilayered 
networks show better generalization properties than the perceptron because &is  lower. 

In this way we see that even in the high-temperature limit the system has a rich 
behaviour. The analysis at  low temperatures requires the introduction of the replica 
technique for solving the full problem. However, following the steps of [13] it is easy 
to obtain a bound ac at zero temperature. For the system with one hidden layer and 
in the limit M >> 1, the result is acC 1.137. 
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